Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Teng-Jiao Yang, ${ }^{\text {a }}$ Hong-Ping Xiao ${ }^{\text {b }}$ and Long-Guan Zhu ${ }^{\text {a }}$
 ${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou University, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.065$
$w R$ factor $=0.145$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aquabis(1,10-phenanthroline)(3-sulfonatobenzoato)manganese(II) tetrahydrate

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, which was obtained by the reaction of MnCl_{2} with sodium hydrogen 3 -sulfobenzoate and 1,10-phenanthroline, is a monomer. The coordination polyhedron of the Mn atom is a distorted octahedron. $\pi-\pi$ Interactions between neighboring monomers and extensive hydrogen bonding consolidate the stability of the crystal structure.

Comment

Recently, 12 3-sulfobenzoate compounds have been synthesized in our laboratory and by other groups. These compounds include one organic complex (Adrabinska et al., 2001) and 11 metal complexes in which the metal atoms include lead (Ying \& Mao, 2004; Ma et al., 2005; Zhu \& Xiao, 2005), barium (Gao et al., 2005), zinc (Li et al., 2005; Zhang \& Zhu, 2005), cadmium (Chen et al., 2005; Miao \& Zhu, 2006) and copper (Cai et al., 2005; Cai \& Zhu, 2005; Miao et al., 2005). As part of an investigation on 3 -sulfobenzoate metal complexes, a manganese 1,10-phenanthroline compound has been prepared, (I).

Compound (I) is a monomer, in which the Mn atom adopts a distorted octahedral geometry completed by four N -atom donors from two 1,10-phenanthroline, one O atom from one 3sulfonatobenzoato, and one O atom from a water molecule (Fig. 1 and Table 1). The 3-sulfonatobenzoate ligand coordinates to the Mn atom in a monodentate manner via one O atoms of the carboxylate group. The carboxylate group is nearly coplanar with the benzene ring to which it is attached, forming a dihedral angle of $2.1(3)^{\circ}$.

In neighboring monomers, there is a strong $\pi-\pi$ interaction between 1,10-phenanthroline ligands, with a centroid-tocentroid distance of 3.497 (2) Å. Extensive hydrogen bonding between water molecules, and between water molecules and

Received 19 June 2006
\qquad
sulfonyl groups, give rise to a three-dimensional network (Fig. 2).

Experimental

A mixture of $\mathrm{MnCl}_{2}(0.032 \mathrm{~g}, 0.25 \mathrm{mmol})$, sodium hydrogen 3 -sulfobenzoate $(0.056 \mathrm{~g}, 0.25 \mathrm{mmol})$ and 1,10 -phenanthroline $(0.051 \mathrm{~g}$, 0.25 mmol) in aqueous solution (20 ml) was stirred for 1 h and then filtered. The resulting solution was allowed to evaporate at room temperature. After 2 d , pale-yellow crystals were filtered off and washed with water.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=705.59$
Monoclinic, C2/c
$a=33.549(7) \AA$
$b=8.1406(15) \AA$
$c=23.584(4) \AA$
$\beta=90.032(8)^{\circ}$
Data collection
Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.843, T_{\text {max }}=0.929$

$$
\begin{aligned}
& V=6441(2) \AA^{3} \\
& Z=8 \\
& D_{x}=1.455 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.54 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, pale yellow } \\
& 0.33 \times 0.21 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

16479 measured reflections
5733 independent reflections 5039 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=25.1^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.145$
$S=1.16$
5733 reflections
454 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0531 P)^{2}\right. \\
& \quad+13.5505 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

Mn1-O1	$2.095(2)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.295(3)$
$\mathrm{Mn} 1-\mathrm{O} 6$	$2.165(3)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.411(4)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.245(3)$	$\mathrm{S} 1-\mathrm{O} 3$	$1.431(4)$
$\mathrm{Mn} 1-\mathrm{N} 3$	$2.258(3)$	$\mathrm{S} 1-\mathrm{O} 5$	$1.441(3)$
$\mathrm{Mn} 1-\mathrm{N} 4$	$2.270(3)$		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 6$	$85.45(10)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 4$	$73.34(11)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$160.12(10)$	$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$89.09(10)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 2$	$88.33(11)$	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 1$	$99.37(12)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$86.42(10)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$73.31(10)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 3$	$164.10(12)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 1$	$94.13(10)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$103.66(11)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$162.41(11)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 4$	$102.08(10)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	$113.3(3)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 4$	$95.06(12)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5$	$112.8(3)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 4$	$97.25(10)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 5$	$111.4(2)$

H atoms bonded to C atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent). The water H atoms were located in difference Fourier maps and

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
refined with restraints for $\mathrm{O}-\mathrm{H}$ distances $[0.85(1) \AA$] and with $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (No. 50073019).

References

Adrabinska, V. V., Tyrk, I. T., Borowiak, T. \& Dutkiewicz, G. (2001). New J. Chem. 25, 1403-1409.
Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, L., Xiao, H.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m2546-m2547.
Cai, L. \& Zhu, L.-G. (2005). Acta Cryst. E61, m2184-m2186.
Chen, J.-M., Zhu, L.-G. \& Cai, G.-Q. (2005). Acta Cryst. E61, m2324-m2326.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S., Zhu, Z.-B., Huo, L.-H. \& Ng, S. W. (2005). Acta Cryst. E61, m517m518.
Li, W.-G., Wang, Z.-W., Cai, Y., Xu, Z.-J., Li, Y.-Z. \& Zheng, H.-G. (2005). Chin. J. Inorg. Chem. 21, 1857-1860.
Ma, A.-Q., Zhu, L.-G. \& Cai, G.-Q. (2005). Acta Cryst. E61, m2264-m2266.
Miao, X.-H., Xiao, H.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m2561-m2563.
Miao, X.-H. \& Zhu, L.-G. (2006). Acta Cryst. E62, m548-m550.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Ying, S.-M. \& Mao, J.-G. (2004). Eur. J. Inorg. Chem. 1270-1276.
Zhang, L.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m2438-m2439.
Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m2283-m2285.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

